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INTRODUCTION

Sixteen antiretroviral drugs have been approved for the treat-
ment of human immunodeficiency virus type 1 (HIV-1) infection:
seven nucleoside/nucleotide reverse transcription (RT) inhibitors
(NRTI), six protease inhibitors (PIs), and three nonnucleoside
RT inhibitors (NNRTI). In previously untreated individuals with
drug-susceptible HIV-1 strains, combinations of three or more
drugs from two drug classes can lead to prolonged virus suppres-
sion and immunologic reconstitution. However, the margin of
success for achieving and maintaining virus suppression is narrow.
Extraordinary patient effort is required to adhere to drug regi-
mens that are expensive, inconvenient, and often associated with
dose-limiting side effects. In addition to these hurdles, the devel-
opment of drug resistance looms as both a cause and conse-
quence of incomplete virus suppression that threatens the success
of future treatment regimens.

RATIONALE FOR HIV-1 DRUG
RESISTANCE TESTING

An increasing number of studies are showing that the presence
of drug resistance before starting a new drug regimen is an inde-
pendent predictor of virologic response to that regimen (reviewed
in references 72, 75, 128, and 138). In addition, several prospec-
tive controlled studies have shown that patients whose physicians
have access to drug resistance data, particularly genotypic resis-
tance data, respond better to therapy than control patients whose
physicians do not have access to these assays (19, 47a, 50a, 92, 139,
380a; Melnick, D., J. Rosenthal, M. Cameron, M. Snyder, S.

Griffith-Howard, K. Hertogs, W. Verbiest, N. Graham, and S.
Pham, Abstract 786, 7th Conference on Retroviruses and Oppor-
tunistic Infections, San Francisco, Calif., 2000; Meynard, J. L., M.
Vray, L. Monard-Joubert, S. Matheron, G. Peytavin, F. Clavel, F.
Brun-Vezinet, and P. M. Girard, 40th Interscience Conference on
Antimicrobial Agents and Chemotherapy, Toronto, Canada, ab-
stract 698, p. 294, 2000). The accumulation of such retrospective
and prospective data has led three expert panels to recom-
mend the use of resistance testing in the treatment of HIV-
infected patients (101, 150; U.S. Department of Health and
Human Services Panel on Clinical Practices for Treatment of
HIV Infection, Guidelines for the use of antiretroviral agents
in HIV-1-infected adults and adolescents, 28 January 2000,
http://www.hivatis.org/trtgdlns.html) (Tables 1 and 2).

Genotypic testing is the most commonly used method of
detecting resistant HIV-1 isolates and is one of the earliest
applications of gene sequencing for clinical purposes. Al-
though genotypic tests are more complex than typical antimi-
crobial susceptibility tests, their ability to detect mutations
present as mixtures, even if the mutation is present at a level
too low to affect drug susceptibility in a phenotypic assay,
provides insight into the potential for resistance to emerge.
They are also advantageous because they can detect transi-
tional mutations that do not cause drug resistance by them-
selves but indicate the presence of selective drug pressure.

Genotypic testing has been shown to be clinically useful in
four of five prospective randomized studies (19, 47a, 92,
380a; Meynard, J. L., M. Vray, L. Monard-Joubert, S.

TABLE 1. Expert-panel recommendations on HIV drug resistance testing

Case type
Recommendationsa

IAS-USAb DHHS EuroGuidelinesc

Primary HIV-1 infection Consider testing: detect transmission
of drug-resistant virus; modify ther-
apy to optimize response; treatment
should not be delayed pending the
genotype results.

Consider testing Strongly consider testing particularly if
transmission rate is high or if trans-
mission from a treated individual is
suspected; treatment should not be
delayed pending genotype results.

Established HIV-1 infection
in untreated individuals

Consider testing: detect prior trans-
mission of drug-resistant HIV, al-
though this may not always be pos-
sible with current tests.

Testing not generally recommended:
Uncertain prevalence of resistant
virus; current assays may not detect
minor drug-resistant species.

Consider testing (the reliability of neg-
ative findings may be a function of
time since infection).

First regimen failure Recommend testing: document
drug(s) to which there is resistance.

Recommend testing Recommend testing

Multiple regimen failures Recommend testing to optimize the
number of active drugs in the next
regimen; exclude drugs to which
response is unlikely

Recommend testing Recommend testing

Suboptimal viral suppres-
sion after initiation of
HAART

Not addressed Recommend testing Not addressed

Pregnancy Recommend testing to optimize ma-
ternal treatment and prophylaxis for
neonate.

Not addressed Recommend testing if the mother has
a detectable virus load; recommend
testing HIV-1-infected children born
to infected mothers while on treat-
ment.

Postexposure prophylaxis Not addressed Not addressed Recommend testing but do not delay
treatment waiting for test result; but
if a sample from index case is avail-
able, test and modify treatment of
recipient accordingly.

a IAS-USA, International AIDS Society–USA; DHHS, Department of Health and Human Services web site (http://www.hivatis.org/trtgdlns.html).
b See reference 150.
c See reference 101.
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Matheron, G. Peytavin, F. Clavel, F. Brun-Vezinet, and
P. M. Girard, 40th Interscience Conference on Antimicro-
bial Agents and Chemotherapy, Toronto, Canada, abstract
698, p. 294, 2000); in contrast, phenotypic testing has been
shown to be clinically useful in just one of four prospective
randomized studies (50a, 139, 256; Melnick, D., J.
Rosenthal, M. Cameron, M. Snyder, S. Griffith-Howard, K.
Hertogs, W. Verbiest, N. Graham, and S. Pham, Abstract
786, 7th Conference on Retroviruses and Opportunistic In-
fections, San Francisco, Calif., 2000).

Several reviews on the genetic basis of HIV-1 drug resis-
tance have recently been published (69, 127, 128, 235, 260,
337). This review will focus on how knowledge of the genetic
basis of HIV-1 drug resistance can be exploited to test for
HIV drug resistance in clinical settings. HIV drug resistance
is an interdisciplinary field; important data have been de-
rived from structural biology, biochemistry, virology, and
clinical studies. This review will integrate data from these
different disciplines that are relevant to the development of
new HIV drugs and to the optimal use of those HIV drugs
that are already available.

EVOLUTION OF HIV-1 DRUG RESISTANCE

The evolution of HIV-1 drug resistance within an individ-
ual depends on the generation of genetic variation in the
virus and on the selection of drug-resistant variants during
therapy. HIV-1 genetic variability is a result of the inability
of HIV-1 RT to proofread nucleotide sequences during rep-
lication (242). It is exacerbated by the high rate of HIV-1
replication in vivo, the accumulation of proviral variants
during the course of HIV-1 infection, and genetic recombi-
nation when viruses with different sequences infect the same
cell. As a result, innumerable genetically distinct variants
(quasispecies) evolve in individuals in the months following
primary infection (50).

The HIV-1 quasispecies within an individual undergo con-

tinuous genetic variation, competition, and selection. Devel-
opment of drug resistance depends on the size and heteroge-
neity of the HIV-1 population within an individual, the extent
to which virus replication continues during drug therapy, the
ease of acquisition of a particular mutation (or set of muta-
tions), and the effect of drug resistance mutations on drug
susceptibility and virus fitness. Some mutations selected during
drug therapy confer measurable phenotypic resistance by
themselves, whereas other mutations increase resistance only
when present with other mutations or compensate for the
diminished replicative activity that can be associated with drug
resistance.

It has been estimated that every possible single point muta-
tion occurs between 104 and 105 times per day in an untreated
HIV-1-infected individual and that double mutants also occur
commonly (50). It is not known, however, whether multidrug-
resistant viruses already exist at low frequencies in untreated
persons or if they are generated by residual viral replication
during therapy (304). Answers to this question depend on the
effective population number of HIV-1 in vivo. Some authors
have argued in favor of a high effective population number and
a deterministic model of HIV-1 evolution in which chance
effects play a small role (313); others have argued in favor of a
lower effective population number and a stochastic model of
HIV-1 evolution (31, 34, 107).

Resistant virus strains can also be transmitted between in-
dividuals. In the United States and Europe, about 10% of new
infections are with HIV-1 strains harboring resistance to at
least one of three classes of anti-HIV drugs (16, 23, 30, 93, 144,
233, 234, 317, 357, 372, 384, 416; Grant, R. M., F. Hecht, C.
Petropoulos, N. Hellmann, M. Warmerdam, N. I. Bandrapalli,
T. Gittens, M. Chesney, and J. Kahn, abstract 142, Antivir.
Ther. 4[Suppl. 1]:98–99, 1999; Harzic, M., C. Deveau, I. Pel-
legrin, b. Dubeaux, P. Sageat, N. Ngo, H. Fleury, B. Hoen, D.
Sereni, and J. F. Delfraissy, abstract 91, Antivir. Ther. 4[Suppl.
1]:61–62, 1999) (Table 3).

TABLE 2. Prospective intervention studies comparing HIV resistance testing to physician-guided therapy

Studya

(reference) Previous treatment No. of
patients

Study
duration

(wk)

RNA change (log10 copies/ml)
Comment

PGTb Genotypic Phenotypic

GART (19) �16 wk of 2 NRTIs and 1 PI 153 12 �0.61 1.19 ND
Havana (380a) �24wk of heavy treatment 326 24 �0.63 �0.84 ND Expert advice added benefit to geno-

typic testing
�0.99 �1.45 ND

VIRA 3001 (50a) �2 NRTIs and 1 PI 272 16 �0.87 ND �1.23
VIRADAPT (92) �24wk of NRTI and 12wk of PIs 108 24 �0.67 �1.15 ND Benefit maintained for 9–12 months
Kaiser �12wk of heavy treatment, NNRTI

naïve
115 16 NSD NSD

NARVAL Heavy treatment (median, 7 drugs) 541 12 NSD NSD NSD Genotypic testing had significant
benefit at 24 wk

ARGENTAc (47a) Variable treatment (41% received
NRTIs, PIs, and NNRTIs)

174 24 �0.39 �0.57 ND Genotypic testing more effective in
patients with plasma HIV-1 RNA
�10,000 copies/ml

CCTG 575 (139) �24 wk of treatment, 1–2 prior PIs,
76% NNRTI naive

238 24 �0.69 ND �0.71 Phenotypic testing was associated
with better outcome in a subgroup
with �5 yr of treatment

a GART, Genotypic Antiretroviral Resistance Testing; ARGENTA, Antiretroviral Genotypic Resistance and Patient Reported Adherence Study. Kaiser study,
Melnick et al., 7th Conf. on Retroviruses, abstr. 786, 2000; NARVAL, Meynard et al., 40th ICAAC, abstr. 698, 2000. The Virco Antivirogram was used in the VIRA
3001 and Kaiser studies. A different recombinant virus assay was used in NARVAL.

b PGT, physician-guided therapy. NSD, no significant difference. ND, not determined.
c At week 12, genotypic more effective than PGT (27 versus 12%, P � 0.02), but at week 24, no significant difference.
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IDENTIFYING AND CHARACTERIZING DRUG
RESISTANCE MUTATIONS

HIV drug resistance is mediated by mutations in the molec-
ular targets of drug therapy. Drug-resistant viruses are usually
first identified by in vitro passage experiments in which viral
isolates are cultured in the presence of increasing concentra-
tions of an antiviral compound. Isolates identified in this man-
ner are further characterized by sequencing to identify genetic
changes arising during selective drug pressure and by in vitro
susceptibility testing. In some cases, HIV-1 constructs contain-
ing specific mutations have been created using site-directed
mutagenesis to directly assess the effect of specific mutations
on drug susceptibility.

Drug susceptibility testing involves culturing a fixed inocu-
lum of HIV-1 in the presence of serial dilutions of an inhibitory
drug. The concentration of drug required to inhibit virus rep-
lication by 50% (IC50) or 90% (IC90) is the most commonly
used measure of drug susceptibility. Drug susceptibility assays
are not designed to determine the amount of drug required to
inhibit virus replication in vivo, but rather to compare the drug
concentration required to inhibit a fixed inoculum of the iso-
lated virus with the concentration required to inhibit the same
inoculum of wild-type virus.

Drug susceptibility results depend on multiple unstandard-
ized factors including the inoculum of virus tested, the cells
used for virus replication, and the means of assessing virus
replication. Susceptibility testing of NRTIs is further compli-
cated by the fact that NRTIs are triphosphorylated to their
active form at different rates in different cell lines. The dy-
namic susceptibility range between wild-type and the most
drug-resistant isolates depends on the drug tested and the
susceptibility assay used. It is as low as 10-fold for some drugs
and as high as 1,000-fold for others. The dynamic susceptibility
range does not necessarily correlate with the potency of a drug;

rather it provides a useful context for interpreting an individual
susceptibility result. For example, a 10-fold reduction in sus-
ceptibility to a drug would be considered high-level resistance
if the dynamic susceptibility range for that drug is 10-fold but
not if it is 1,000-fold.

The process of identifying drug resistance mutations using
virus passage studies and characterizing their impact by testing
the susceptibility of site-directed mutants containing the same
amino acid changes is highly rigorous but has several limita-
tions. First, the spectrum of mutations developing during in
vitro passage experiments is narrower than in isolates from
treated patients. This is particularly true for patients receiving
combinations of drugs targeting the same enzyme. Second,
site-directed mutagenesis studies cannot capture the compli-
cated patterns of mutations observed in clinical isolates and
cannot account for the impact of background polymorphisms
that may influence the viability and extent of resistance in
isolates containing known drug resistance mutations. Finally,
clinical data often provide additional insight into which muta-
tions are the most significant in vivo.

To characterize the mutations responsible for drug resis-
tance, it is therefore necessary to also study HIV-1 isolates
from patients receiving treatment. Specifically, three addi-
tional types of data must be collected: correlations between
mutations and drug susceptibility in clinical HIV isolates, cor-
relations between mutations and the drug treatment histories
of persons from whom the sequenced isolates have been ob-
tained, and correlations between mutations and the virologic
response to a new HIV drug regimen. HIV-1 isolates from
persons failing drug therapy are crucial observations of HIV-1
evolution that show which mutations the virus uses to escape
from drug suppression in vivo. Such data are particularly im-
portant for elucidating the genetic mechanisms of resistance to
drugs that are difficult to test in vitro susceptibility tests.

TABLE 3. Antiretroviral drug resistance in individuals with primary HIV-1 infection or seroconversion within the preceding 12 monthsa

Study Years Country (cities) No. of
patients Resistance test

% Resistance

NRTI NNRTI PI MDR

Balotta (16) 1994–1997 Italy (Milan) 38 Genotype 21 3 0 0
Boden (23) 1995–1999 USA (Los Angeles, New York) 80 Genotype with confirmatory phenotype

on selected isolates
13 8 3 4

Grantb 1996–1999 USA (San Francisco) 118 Genotype with confirmatory phenotype
on selected isolates

11 4 4 NA

Harzicc 1996–1998 France 158 Genotype 6 1 2 NA
Yerly (416) 1996–1998 Switzerland 82 Genotype with confirmatory phenotype

on selected isolates
10 2 4 4

Little (234) 1989–1998 USA (Boston, Dallas, Denver,
Los Angeles, San Diego)

141 Phenotype with confirmatory genotype on
selected isolates

�3 �1 �1 �1

Salomon (317) 1997–1999 Canada (Montreal) 81 Genotype with confirmatory phenotype
on selected isolates

6 4 4 5

Tamalet (372) 1995–1998 France (Marseilles, Toulouse) 48 Genotype 17 0 2 2
Duwe (93) 1996–1999 Germany 64 Genotype with confirmatory phenotype

on selected isolates
14 0 3 0

Briones (30) 1997–1999 Spain 30 Genotype with confirmatory phenotype
on selected isolates

23 3 7 7

Pillay (384) 2000 United Kingdom 26 Genotype 19 11 4 7
Simon (357) 1999–2000 New York 61 Genotype with confirmatory phenotype 26 5 7 5

a Abbreviations: MDR, multidrug resistance, resistance within more than one class of drugs; NA, not available. In these studies, the following mutations were detected
and considered genotypic evidence of resistance: for the NRTIs, M41L, D67N, T69D, K70R, L74V, M184V, L210W, and T215Y/F/S/D/C; for the NNRTIs, L100I,
K101E, K103N, Y181C, and G190A; for the PIs, D30N, M46I/L/V, G48V, I54V, V82A, I84V, and L90M. In the study by Little et al., not all isolates had genotypic
testing done, and the percent resistance represents a lower limit to the prevalence of genotypic resistance in that study.

b Grant et al., Antivir. Ther. 4(Suppl. 1):98–99, abstr. 142, 1999.
c Harzic et al., Antivir. Ther. 4(Suppl. 1):68–69, abstr. 91, 1999.

250 SHAFER CLIN. MICROBIOL. REV.



Correlations between genotype and virologic response to a
new regimen are essential for demonstrating the clinical sig-
nificance of drug resistance mutations. Because drug resistance
mutations arise in the enzymes targeted by therapy, many of
these mutations compromise enzymatic function. Although,
the fitness of these variants can be tested in vitro, such fitness
tests are not standardized and are unable to detect subtle
changes in replication or the likelihood that certain defects in
fitness may be readily compensated for by other genetic
changes in the virus while other defects may be more crippling.
How a mutant virus responds to a new drug regimen in vivo,
therefore provides the most meaningful test of virus fitness.

Because insertions and deletions are uncommon in HIV-1
RT and protease, researchers have been able to develop a
standardized numbering system for HIV-1 drug resistance mu-
tations. The most commonly used wild type reference sequence
is the subtype B consensus sequence. This sequence was orig-
inally derived from alignments in the HIV Sequence Database
at Los Alamos (205) and can now be found on the HIV RT and
Protease Sequence Database (339). The standardized number-
ing system and reference sequence have led to the develop-
ment of a shorthand for mutations in which a letter indicating
the consensus B wild-type amino acid is followed by the amino
acid residue number, followed by a letter indicating the muta-
tion (e.g., T215Y).

So many mutations in both the protease and RT have been
associated with drug resistance that it has become customary to
label some mutations either primary (or less commonly major)
and other mutations secondary (or minor). The term primary is
used to indicate mutations that reduce drug susceptibility by
themselves whereas the term secondary is used to indicate
mutations that reduce drug susceptibility or improve the rep-
licative fitness of isolates with a primary mutation. However,
the labels primary and secondary are not strictly defined. For
example, some mutations might be considered to be primary

for one drug but secondary for another drug. Moreover, sec-
ondary mutations commonly arise before primary mutations.

PI RESISTANCE

HIV-1 Protease

The HIV-1 protease enzyme is responsible for the posttrans-
lational processing of the viral gag- and gag-pol-encoded
polyproteins to yield the structural proteins and enzymes of the
virus. The enzyme is an aspartic protease composed of two
noncovalently associated, structurally identical monomers 99
amino acids in length (Fig. 1). Its active site resembles that of
other aspartic proteases and contains the conserved triad, Asp-
Thr-Gly, at positions 25 to 27. The hydrophobic substrate cleft
recognizes and cleaves 9 different peptide sequences to pro-
duce the matrix, capsid, nucleocapsid, and p6 proteins from the
gag polyprotein and the protease, RT, and integrase proteins
from the gag-pol polyprotein. The enzyme contains a flexible
flap region that closes down on the active site upon substrate
binding.

Resistance is mediated by at least two different types of
mechanisms. Mutations in the substrate cleft cause resistance
by reducing the binding affinity between the inhibitor and the
mutant protease enzyme. Other mutations either compensate
for the decreased kinetics of enzymes with active site mutations
or cause resistance by altering enzyme catalysis, dimer stability,
inhibitor binding kinetics, or active site reshaping through
long-range structural perturbations (97). The three-dimen-
sional structures of wild-type HIV-1 protease and several drug-
resistant mutant forms bound to various inhibitors have been
determined by crystallography (1, 2, 15, 47, 238, 239).

PI resistance usually develops gradually from the accumula-
tion of multiple primary and secondary mutations. Most pri-
mary mutations, by themselves, cause a two- to fivefold reduc-

FIG. 1. Structural model of HIV-1 protease homodimer labeled with protease inhibitor resistance mutations. The polypeptide backbone of both
protease subunits (positions 1 to 99) is shown. The active site, made up of positions 25 to 27 from both subunits, is displayed in ball and stick mode.
The protease inhibitor resistance mutations are shown for the subunit on the left but not for the subunit on the right. The protease was
cocrystallized with indinavir, which is displayed in space-fill mode. This drawing is based on a structure published by Chen et al. (46).
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tion in susceptibility to one or more PIs. However, this level of
resistance is often insufficient to interfere with the antiviral
activity of these drugs. Higher levels of resistance are resulting
from the accumulation of additional primary and secondary
mutations are often required for clinically significant reduc-
tions in drug susceptibility. This requirement for multiple mu-
tations to overcome the activity of PI inhibitors has been re-
ferred to as a “genetic barrier” to drug resistance (54, 188,
265).

Sequence analyses of drug resistant isolates has shown that
mutations at several of the protease cleavage sites are also
selected during treatment with protease inhibitors (60, 87, 180,
187, 237, 240, 420). Growth kinetic studies have shown that
cleavage site mutations in some circumstances improve the
kinetics of protease enzymes containing drug resistance muta-
tions and that the cleavage site mutations are compensatory
rather than primary. Moreover, there have been no reports
that changes at cleavage sites alone can cause PI resistance.

PIs

There are six FDA-approved PIs: amprenavir, indinavir, lopi-
navir (manufactured in combination with ritonavir), nelfinavir,
ritonavir, and saquinavir. The spectrum of mutations developing
during therapy with indinavir, nelfinavir, saquinavir, and ritonavir
have been well characterized (9, 24, 54, 61, 265, 281, 320, 334), but
fewer data are available for amprenavir (237a) and lopinavir (35).
The dynamic susceptibility range for indinavir, ritonavir, saquina-
vir, nelfinavir, and lopinavir is about 100-fold in most drug sus-
ceptibility assays (148, 149, 290, 393; Brun, S., D. Kempf, J. Isaac-
son, A. Molla, H. Mo, C. Benson, and E. Sun, abstract 452, 8th
Conference on Retroviruses and Opportunistic Infections, Chi-
cago, Ill., 2001). The dynamic susceptibility range for amprenavir
is about 10- to 20-fold. In patients receiving PI combinations or in
patients maintaining high PI levels, virologic rebound requires
multiple mutations and high-levels of phenotypic resistance.

Pharmacologic factors influence the clinical efficacy of PIs
more than that of the other two classes of HIV drugs. Virologic
response is highly correlated with the ratio of the trough drug
concentration divided by the inhibitory concentration of the drug
(e.g., the IC50 in a standardized assay), a ratio that is commonly
referred to as the inhibitory quotient (IQ) (153). Drug levels
achieved during PI monotherapy can vary greatly among individ-
uals, often resulting in low IQs. This has led to the practice of
administering subtherapeutic doses of ritonavir (a P450 enzyme
inhibitor) in combination with other PIs to increase their drug
levels—a practice known as PI boosting. Lopinavir is formulated
in a fixed combination with ritonavir; and saquinavir, indinavir,
and amprenavir are also increasingly likely to be administered
with low-dose ritonavir (162). Boosted PIs require higher levels of
resistance than PIs given as monotherapy before significant loss of
antiviral activity and virologic rebound occur.

Protease Substrate Cleft Mutations

V82A/T/F/S mutations occur predominantly in HIV-1 isolates
from patients receiving treatment with indinavir and ritonavir (54,
265). V82A also occurs in isolates from patients receiving pro-
longed therapy with saquinavir following the development of the
mutation G48V (330, 409). By themselves, mutations at codon 82

confer decreased in vitro susceptibility to indinavir, ritonavir, and
lopinavir (54, 188, 265, 345) but not to nelfinavir, saquinavir, or
amprenavir. However, when present with other PI mutations,
V82A/T/F/S contributes phenotypic and clinical resistance to each
of the PIs (102, 188, 343, 345, 409; Kempf, D., S. Brun, R. Rode,
J. Isaacson, M. King, Y. Xu, K. Real, A. Hsu, R. Granneman, Y.
Lie, N. Hellmann, B. Bernstein, and E. Sun, abstract 89, Antivir.
Ther. 5[Suppl. 3]:70–71, 2000). V82I occurs in about 1% of un-
treated individuals with subtype B HIV-1 and in 5 to 10% of
untreated individuals with non-B isolates (114). Preliminary data
suggest that V82I confers minimal or no resistance to the
available PIs (79, 193; Brown, A. J., H. M. Precious, J. Whit-
comb, V. Simon, E. S. Daar, R. D’Aquila, P. Keiser, E. Con-
nick, N. Hellmann, C. Petropoulos, M. Markowitz, D. Rich-
man, and S. J. Little, abstract 424, 8th Conference on
Retroviruses and Opportunistic Infections, Chicago, Ill., 2001).

I84V has been reported in patients receiving indinavir,
ritonavir, saquinavir, and amprenavir 54, 61, 148, 237a, 265,
330) and causes phenotypic 42, 54, 188, 277, 280, 282, 378 387)
and clinical (278, 423; Kempf, D., S. Brun, R. Rode, J. Isaac-
son, M. King, Y. Xu, K. Real, A. Hsu, R. Granneman, Y. Lie,
N. Hellmann, B. Bernstein, and E. Sun, abstract 89, Antivir.
Ther. 5[Suppl. 3]:70–71, 2000) resistance to each PI. I84V
tends to develop in isolates that already have the mutation
L90M and is rarely the first major mutation to develop in
patients receiving a PI (178).

G48V occurs primarily in patients receiving saquinavir and
rarely in patients receiving indinavir. This mutation causes
10-fold resistance to saquinavir and about 3-fold resistance to
indinavir, ritonavir, and nelfinavir (149, 172, 282, 409). Isolates
with a combination of mutations at codons 48, 54, and 82 have
been tested against each of the PIs except lopinavir and found
to have high-level resistance to each (277, 343).

D30N occurs solely in patients receiving nelfinavir and con-
fers no in vitro or clinical cross-resistance to the other PIs (243,
282, 409). Cross-resistance to indinavir, ritonavir, and saquina-
vir has been observed in isolates that have D30N along with
mutations at positions 88 and 90 (279).

I50V has been reported only in patients receiving amprenavir
as their first PI (237a). In addition to causing reduced amprenavir
susceptibility, it has been shown to increased ki values to ritonavir,
indinavir, and nelfinavir in biochemical studies (Xu, R., W. An-
drews, A. Spaltenstein, D. Danger, W. Dallas, L. Carter, M. Han-
lon, L. Wright, and E. Furfine, abstract 54, Antivir. Ther. 6[Suppl.
1]:43, 2001) and to cause in vitro cross-resistance to ritonavir and
lopinavir (279, 280, 378). Possibly because of the rarity of this
mutation, there have been few reports of multidrug-resistant iso-
lates containing this mutation.

V32I occurs in patients receiving indinavir, ritonavir, and am-
prenavir. It usually occurs only in association with other PI resis-
tance mutations in the substrate cleft or flap and by itself appears
to cause minimal resistance to any one drug. R8K and R8Q are
substrate cleft mutation that cause high-level resistance to one of
the precursors of ritonavir (A-77003) (124, 152), but they have not
been reported with the current PIs.

Protease Flap Mutations

The protease flap region (positions 45 to 56) extends over the
substrate-binding cleft and must be flexible to allow entry and exit
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of the polypeptide substrates and products (346). In addition to
G48V and I50V, which are also in the substrate cleft, mutations at
positions 46, 47, 53, and 54 make important contributions to drug
resistance. Mutations at position 54 (generally I54V, less com-
monly I54T/L/M) contribute resistance to each of the six ap-
proved PIs and have been commonly reported during therapy
with indinavir, ritonavir, amprenavir and saquinavir, and lopinavir
(55, 237a, 265, 281, 320). I54L and I54 M are particularly common
in persons receiving amprenavir and have been shown to have a
greater effect on amprenavir than the mutation I54V (237a).

Mutations at position 46 contribute to resistance to each of the
PIs except saquinavir and have been commonly reported during
therapy with indinavir, ritonavir, amprenavir, and nelfinavir (55,
237a, 265, 281, 320). Mutations at codon 47 have been reported in
patients receiving amprenavir, indinavir, and ritonavir, and often
occur in conjunction with the nearby substrate cleft mutation,
V32I. F53L has been reported rarely in patients receiving PI
monotherapy, but it occurs in more than 10% of patients treated
with multiple PIs (178). It has most recently come to attention as
one of the mutations associated with phenotypic resistance to
lopinavir in multivariate analyses (188).

Protease Mutations at Other Conserved Residues

L90M has been reported in isolates from patients treated with
saquinavir, nelfinavir, indinavir, and ritonavir. L90M either con-
tributes to or directly confers in vitro resistance to each of the six
approved PIs and plays a role in causing clinical cross-resistance
to each of the PIs (88, 102, 148, 188, 227, 278, 423; Kempf, D., S.
Brun, R. Rode, J. Isaacson, M. King, Y. Xu, K. Real, A. Hsu, R.
Granneman, Y. Lie, N. Hellmann, B. Bernstein, and E. Sun,
abstract 89, Antivir. Ther. 5[Suppl. 3]:70–71, 2000). Crystal struc-
tures with and without the mutant have shown that the Leu90 side
chain lies next to Leu24 and Thr26 on either side of the catalytic
Asp25 (238, 239, 274) but the mechanism by which L90M causes
PI resistance is not known.

Mutations at codon 73, particularly G73S, have been re-
ported in 10% of patients receiving indinavir and saquinavir
monotherapy and occasionally during nelfinavir monotherapy
(178, 334). However, this mutation occurs most commonly in
patients failing multiple PIs, usually in conjunction with L90M.
Mutations at position 88 (N88D and N88S) commonly occur in
patients receiving nelfinavir and occasionally in patients receiv-
ing indinavir. By itself, a mutation at this position causes low-
level nelfinavir resistance. However, a mutation at this position
causes high-level nelfinavir resistance in the presence of D30N
or M46I (290, 421). N88S (but not N88D) has been shown to
hypersensitize isolates to amprenavir (421), but the clinical
significance of this finding is not known. L24I has been re-
ported only in HIV-1 isolates from patients receiving indinavir
(55) and has not been shown to confer cross-resistance to other
PIs, except possibly lopinavir (188).

Polymorphic Sites Contributing to Resistance

Amino acid variants at seven polymorphic positions, includ-
ing codons 10, 20, 36, 63, 71, 77, and 93, also make frequent
contributions to drug resistance. These mutations do not cause
drug resistance by themselves. Some contribute to drug resis-
tance when present together with other protease mutations;

whereas others compensate for the decrease in catalytic effi-
ciency caused by other mutations (56, 241, 246, 272, 310).

Mutations at codons 10, 20, 36, and 71 occur in up to 5 to 10%
of untreated persons infected with subtype B viruses. However, in
heavily treated patients harboring isolates with multiple muta-
tions in the substrate cleft, flap, or at codon 90, the prevalence of
mutations at these positions increases dramatically. Mutations at
codon 10 and 71 increase to 60 to 80%, whereas mutations at
codons 20 and 36 increase to 30 to 40% (148, 177). Codon 63 is
the most polymorphic protease position. In untreated persons
about 45% of isolates have 63L (considered the subtype B con-
sensus), about 45% have 63P, and about 10% have other residues
at this position. However, the prevalence of amino acids other
than L increases to 90% in heavily treated patients (177, 413).
Mutations at codons 77 and 93 double in prevalence from 15 to
20% in untreated persons to 30 to 40% in heavily treated persons
(177).

In some HIV-1 subtypes, mutations at codons 10, 20, and 36
occur at higher rates than they do in subtype B isolates (58,
114, 293, 331). It has been hypothesized that individuals har-
boring isolates containing multiple accessory mutations may be
at a greater risk of virologic failure during PI therapy (288,
289). However, most studies to date have not supported this
hypothesis (3a, 25, 106, 208, 288, 289, 329).

PI Cross-Resistance Patterns

Most PI resistance mutations confer resistance to multiple PIs
and should be considered class-specific rather than drug-specific
mutations. In a study of over 6,000 HIV-1 isolates tested for
susceptibility to indinavir, nelfinavir, ritonavir, and saquinavir,
59% to 80% of isolates with a 10-fold decrease in susceptibility to
one PI also had a 10-fold decrease in susceptibility to at least one
other PI (148). In another study of 3000 HIV-1 isolates, suscep-
tibility to indinavir, ritonavir, and lopinavir were highly correlated
(279). Isolates that were resistant to these drugs were generally
also resistant to nelfinavir; however, isolates resistant to nelfinavir
due to D30N were generally not cross-resistant to other drugs.
Susceptibilities to saquinavir and amprenavir were less well cor-
related to one another or to the other PIs (279). Similar cross-
resistance patterns among the PIs have been reported in other
smaller studies (185, 300, 321, 322).

Patients in whom nelfinavir-resistant isolates arise after
nelfinavir treatment often respond to a regimen containing a
different PI because D30N and N88D/S confer little cross-
resistance to other PIs (185, 423). But because as many as 15%
of nelfinavir failures may be associated with mutations at
codons 46 and/or 90, virologic failure while receiving nelfinavir
does not guarantee susceptibility to other PIs (9, 281). Nelfi-
navir is usually unsuccessful as salvage therapy because most of
the mutations that confer resistance to other PIs confer cross-
resistance to nelfinavir (148, 227, 399).

In vitro drug susceptibility studies suggest that patients failing
other PIs often have isolates that retain susceptibility to amprena-
vir and saquinavir (300, 321). But neither drug has demonstrated
usefulness when administered as salvage therapy without ritonavir
boosting (82, 92a, 102). In a study of ritonavir/saquinavir salvage
therapy, the number of mutations at positions 46, 48, 54, 82, 84,
and 90 predicted the virologic response at 4, 12, and 24 weeks.
Patients with three or more of these mutations had no response to

VOL. 15, 2002 GENOTYPIC TESTING FOR HIV-1 DRUG RESISTANCE 253



salvage (423). Data on salvage therapy with ritonavir-boosted
amprenavir are not yet available.

In a study of salvage therapy with a regimen containing lopi-
navir and efavirenz, the number of mutations at positions 10, 20,
24, 46, 53, 54, 63, 71, 82, 84, and 90 predicted the level of phe-
notypic resistance and the virologic response after 24 weeks of
therapy (188; Kempf, D., S. Brun, R. Rode, J. Isaacson, M. King,
Y. Xu, K. Real, A. Hsu, R. Granneman, Y. Lie, N. Hellmann, B.
Bernstein, and E. Sun, abstract 89, Antivir. Ther. 5[Suppl. 3]:70–
71, 2000). A decreased response to therapy was observed only in
those patients that had �6 of the listed mutations. Subsequent
analyses have suggested that mutations at positions 10, 20, 46, 54,
and 82 may be more predictive than the others listed (40, 264) and
that other mutations, including I50V and G73S may contribute to
resistance in different patient cohorts (135, 279). Nonetheless, the
large number of mutations required to interfere with a clinical
response to therapy demonstrates the high genetic barrier to
resistance associated with a drug that achieves high levels in vivo.

In summary, clinical studies have shown that most patients
developing virologic failure during treatment with one PI have a
diminished virologic response to treatment with a second PI (Ta-
ble 4). Indeed, most of the successful cases of salvage therapy in
patients failing a PI regimen have included regimens with dual PIs
or a change to a new PI in combination with an NNRTI (20a, 92a,
294, 423; Kempf, D., S. Brun, R. Rode, J. Isaacson, M. King, Y.
Xu, K. Real, A. Hsu, R. Granneman, Y. Lie, N. Hellmann, B.
Bernstein, and E. Sun, abstract 89, Antivir. Ther. 5[Suppl. 3]:70–
71, 2000). There continues to be great interest in discovering ways
to use genotypic data to help switch from one PI to another,
although the second PI is increasingly being given as part of a
boosted regimen.

Investigational PIs

The most advanced of the new PI are BMS-232,632 and ti-
pranavir. BMS-232,632 is a highly potent inhibitor of HIV-1 pro-
tease with a favorable pharmacokinetic profile that allows once
daily dosing. In phase I/II studies it has demonstrated anti-HIV
activity similar to that of each of the approved PIs (308; Squires,
K., J. Gatell, P. Piliero, I. Sanne, R. Wood, and S. M. Schnittman,
abstract 15, 8th Conference on Retroviruses and Opportunistic
Infections, Chicago, Ill., 2001). During in vitro passage experi-
ments BMS-232,632 resistant isolates develop mutations at posi-
tions 32, 50, 84, and/or 88, a pattern of mutations that is different
from that developing in patients treated with other PIs (113). But
isolates developing resistance during treatment with other PIs and
containing mutations at positions 82, 84, or 90, together with
mutations in the protease flap (e.g., positions 46 and 54) are
usually cross-resistant to BMS-232,632 (277 Colonno, R. J., K.
Hertogs, B. Larder, K. Limoli, G. Heilek-Snyder, and N. Parkin,
abstract 8, Antivir. Ther. 5[Suppl. 3]:7, 2000). The drug’s potency
and pharmacokinetic profile make it a promising candidate for
approval. But because its resistance profile overlaps with that of
the other approved PIs its usefulness as a salvage therapy is
uncertain.

Tipranavir is a nonpeptidomimetic PI with greater flexibility in
conforming to enzyme variants with PI resistance mutations (219,
260, 383). However, tipranavir is less potent than other PIs both
in vitro and in vivo, and has a narrower dynamic susceptibility
range compared with other PIs (14, 219, 316). The narrow dy-

namic susceptibility range makes it difficult to assess the clinical
significance of the decreased cross-resistance between tipranavir
and the currently approved PIs. Data are pending on its activity
when used in combination with ritonavir.

NRTI RESISTANCE

HIV-1 RT

The RT enzyme is responsible for RNA-dependent DNA
polymerization and DNA-dependent DNA polymerization.
RT is a heterodimer consisting of p66 and p51 subunits. The
p51 subunit is composed of the first 440 amino acids of the RT
gene. The p66 subunit is composed of all 560 amino acids of
the RT gene. Although the p51 and p66 subunits share 440
amino acids, their relative arrangements are significantly dif-
ferent. The p66 subunit contains the DNA-binding groove and
the active site; the p51 subunit displays no enzymatic activity
and functions as a scaffold for the enzymatically active p66
subunit. The p66 subunit has five subdomains, including the
fingers, palm, and thumb subdomains that participate in poly-
merization, and the connection and RNase H subdomains.

Most RT inhibitor resistance mutations are in the 5� poly-
merase coding regions, particularly in the “fingers” and “palm”
subdomains (Fig. 2). Structural information for RT is available
from X-ray crystallographic studies of RT bound to an NNRTI
(198), unliganded RT (309), and RT bound to double-stranded
DNA (158, 171). However, only one structure exists that
enables visualization of the interaction between the catalytic
complex and the incoming deoxynucleoside triphosphate
(dNTP) (158). There have been fewer structural determina-
tions of mutant RT enzymes than of mutant protease enzymes
(302, 318).

NRTIs

Six nucleoside analogs and one nucleotide analog have been
approved by the Food and Drug Administration (FDA). The
nucleoside analogs include zidovudine, didanosine, zalcitibine,
stavudine, lamivudine, and abacavir. Abacavir, which was ap-
proved in 1998 is the most recently approved nucleoside. Te-
nofovir, which was approved in late 2001, is the only FDA-
approved nucleotide analog. Both nucleoside and nucleotide
analogs are prodrugs that must be phosphorylated by host
cellular enzymes. Nucleosides must be tri-phosphorylated; nu-
cleotides, because they already have one phosphate moiety,
must be di-phosphorylated. Phosphorylated NRTIs compete
with natural dNTPs for incorporation into the newly synthe-
sized DNA chains where they cause chain termination. Be-
cause both nucleoside and nucleotide analog RT inhibitors act
by a similar mechanism, the abbreviation NRTIs will be used
for both classes of compounds.

There are two biochemical mechanisms of NRTI drug resis-
tance. The first mechanism is mediated by mutations that allow
the RT enzyme to discriminate against NRTIs during synthe-
sis, thereby preventing their addition to the growing DNA
chain (158, 226, 319). The second mechanism is mediated by
nucleotide excision mutations (NEMs) that increase the rate of
hydrolytic removal of the chain-terminating NRTI and enable
continued DNA synthesis (6, 7, 252, 254).
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In most drug susceptibility assays, the dynamic susceptibility
range is �100-fold for zidovudine and lamivudine and 15- to
20-fold for didanosine, stavudine, zalcitibine, abacavir, and
tenofovir (393). Mutant isolates from patients failing therapy
with zidovudine, lamivudine, and abacavir usually have mea-
surable phenotypic drug resistance. In contrast, mutant isolates
from patients failing therapy with stavudine or didanosine are
often found to be drug susceptible in phenotypic assays. Be-
cause tenofovir has only recently been approved, there are
fewer data on the genotypic correlates of drug resistance and
on how well these changes can be detected in phenotypic
assays. The difficulty in detecting didanosine resistance is
thought to be an artifact of susceptibility testing caused by the
inefficient conversion of didanosine to the active compound
ddATP when stimulated lymphocytes are used for susceptibil-
ity testing (111). The difficulty in detecting stavudine resistance
may also be an artifact of the current susceptibility tests that
rely on stimulated lymphocytes (230, 253).

NEMs

The most common mutations occurring in clinical HIV-1
samples obtained from patients receiving NRTIs were origi-
nally identified for their role in causing zidovudine resistance.
Various combinations of these mutations which occur at
codons 41, 67, 70, 210, 215, and 219 (133, 156, 182, 222), have
been shown to mediate both ATP and pyrophosphate (PP)-

dependent hydrolytic removal of zidovudine and stavudine
monophosphate from a terminated cDNA chain (6, 252, 254)
and cause a compensatory increase in RT processivity (6, 8,
39). ATP-dependent hydrolytic removal of ddNTP, which traps
the unblocked ddNTP in an inactive dinucleoside polyphos-
phate moiety, is more clinically significant than pyrophosphate-
dependent hydrolytic removal, which merely regenerates an
active ddNTP(262).

In a ddNTP-terminated primer, the presence of the dNTP
that would have been incorporated next, had the primer been
free for elongation, results in the formation of a stable “dead-
end” catalytic complex between RT, primer, template, and
dNTP (29, 230, 262, 379). The formation of such a dead-end
complex may interfere with the ability of NEMs to facilitate the
resumption of virus DNA chain elongation. Biochemical and
structural modeling studies have suggested that the bulky azido
group of zidovudine may interfere with the formation of a
dead-end catalytic complex by sterically preventing the addi-
tion of the next dNTP (29, 230). This observation may explain,
at least in part, why the NEMs cause the highest levels of
phenotypic resistance to zidovudine, despite the fact that bio-
chemical studies have shown that some combinations of NEMs
elevate ATP-dependent removal of blocked stavudine-mono-
phosphate (MP) to the same degree as zidovudine-MP (230,
253).

The structural basis underlying the NEMs mechanism of

TABLE 4. Correlations between HIV-1 PI resistance mutations and response to a new PI-containing regimena

Study Previous regimen Follow-up regimen Wk Effect of baseline mutations on response to follow-up ART

Harrigan (132) �1 PI RTV�SQV 66 In the papers by Harrigan and Zolopa, the number of mutations
at codons 46, 48, 54, 82, 84, and 90 correlated with a worse re-
sponse to RTV�SQV. In the paper by Zolopa, virologic re-
sponse occurred in patients with �3 of the mutations. The pres-
ence of D30N did not affect response to RTV�SQV. In the
paper by Deeks, only 4 of 18 patients had a sustained decrease
in RNA of 0.5 log10 at week 24.

Deeks (70) IDV or RTV RTV�SQV 24
Tebas (375) NFV RTV�SQV 24
Zolopa (423) �1 PI RTV�SQV 26
Para (278) SQV IDV 8 Mutations at codons 10, 20, 48, 82, 84, and 90 predicted a poor

response to IDV salvage therapy.
Condra (55) NFV IDV 24 L90M predicted a higher risk of virologic failure than D30N.
Lawrence (227) SQV NFV 16 L90M predicted virologic failure with NFV.
Walmsley (399) �1 PI NFV (� NNRTI) 63 41% and 22% had RNA declines of �1 0.5 log at 24 and 48 wk,

respectively. The presence of mutations at codons 48, 82, 84,
and 90 correlated with a poor virologic response.

Kleinb �1 PI APV 12 I84V and L90M predicted virologic failure; D30N did not.
Falloon (102) �1 PI APV 16 9 heavily treated patients harboring PI mutations at codons 82 and

90 together with mutations at codons 46 and/or 54 had no viro-
logic response to salvage therapy with an APV-containing regi-
men.

Descamps (82) �1 PI APV 46 The presence of �4 of the following mutations differentiated those
with an RNA decrease of �1.0 log at week 12: L10I, V32I,
M46IL, I47V, I54V, G73S, V82ATFS, I84V, L90M.

Cosado (43) NRTI, IDV � RTV NFV � SQV � NVP � d4T 31 35% and 56% of patients had RNA �50 copies/ml after 6 and 12
months, respectively. L90M decreased the rate of response (43%
vs. 0%) but not V82A (36% vs. 38%).

Kempfc �1 PI RTV/LPV (�EFV) 24 Mutations at 11 positions were associated with drug resistance
(codons 10, 20, 24, 46, 53, 54, 63, 71, 82, 84, and 90). Among
122 NNRTI-naive patients, 24 of 25 with 0–5 of the above muta-
tions, 16 of 21 with 6–7 mutations, and 2 of 6 with 8–10 had
plasma HIV-1 RNA �400 copies/ml at wk 24.

a Abbreviations: APV, amprenavir; d4T, starudine; EFV, efavirenz, IDV, indinavir, LPV, lopinavir, NFV, nelfinavir, RTV, ritonavir, SQV, saquinavir.
b Klein et al., Antivir. Ther. 5(Suppl. 2):4, abstr. 3, 2000.
c Kempf et al., Antivir. Ther. 5(Suppl. 3):70–71, abstr. 89, 2000.
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action is not yet understood. Two crystallographic studies have
described possibly different roles for the NEMs depending on
the particular mutant enzyme studied. One study suggested
that positions 215 and 219 give rise to changes that propagate
to the active site residues via adjacent residues in the enzyme
(302). Whereas the second study suggested that in some mu-
tant structures, T215Y may make direct contact with the dNTP
substrate (Stammers, D. K., J. Ren, C. Nichols, P. Chamber-
lain, L. Douglas, J. Lennerstrand, B. Larder, and D. I. Stuart,
abstract 72, Antivir. Ther. 6[Suppl. 1]:54–55, 2001).

During the past few years, several studies have shown that
the NEMs are associated with resistance not just to zidovudine,
but also to stavudine, abacavir, and to a lesser extent, to di-
danosine, zalcitibine, and tenofovir (259, 262, 398). The NEMs
are selected primarily in patients treated with zidovudine or
stavudine alone or in combination with other NRTIs (27, 49,
169, 203, 232, 266, 285, 291, 305, 311, 335, 353). They occur in
about 10% of patients treated with didanosine monotherapy
(77, 410; Winters, M. A., M. Hughes, S. Lustgarten, and D. A.
Katzenstein, abstract 131, Antivir. Ther. 6[Suppl. 1]:96–97,
2001) but do not appear to occur during abacavir mono-
therapy (261). There are few data on the development of
NEMs in patients receiving zalcitibine or tenofovir without
other NRTIs.

K70R causes low-level (four- to eightfold) zidovudine resis-
tance and is usually the first drug resistance mutation to de-
velop in patients receiving zidovudine monotherapy (27, 64).
T215Y/F results from a two base-pair mutation and causes
intermediate (10- to 20-fold) zidovudine resistance. It arises in
patients receiving dual NRTI therapy, as well as, in those
receiving zidovudine monotherapy (207, 224, 335). T215S/C/D
are transitional mutations between wild-type and Y or F that
do not cause reduced drug susceptibility but rather indicate the
presence of previous selective drug pressure (67, 221, 417).
Mutations at positions 70 and 215 are antagonistic in their
effect on zidovudine resistance and these two mutations rarely
occur together unless additional NEMs are also present (27).

Mutations at positions 41 and 210 usually occur with muta-
tions at position 215 (133, 156, 414). Mutations at positions 67
and 219 may occur with mutations at position 70 or with mu-
tations at position 215. T215Y and K219Q are associated with
increased processivity. L210W is strongly associated with
M41L and T215F/Y and decreases the susceptibilities of iso-
lates with these mutations by several fold. L210W may stabilize
the interaction of 215YF with the dNTP binding pocket (262,
414). In patients failing multiple dual nucleoside therapy it is
not unusual for isolates to have four, five, or even all six NEMs.

Clinical studies have shown that the NEMs, particularly mu-
tations at position 215 interfere with the clinical response to
zidovudine (203, 303), stavudine (353), abacavir (102, 191,
214), didanosine (155, 173), and most dual NRTI combinations
(169, 266; Costagliola, D., D. Descamps, V. Calvez, B. Mas-
quelier, A. Ruffault, F. Telles, J. L. Meynard, and F. Brun-
Vizinet, abstract 7, Antivir. Ther. 6:S8, 2001; Mayers, D., T.
Merigan, and P. Gilbert, abstract 129, 6th Conference on Ret-
roviruses and Opportunistic Infections, Chicago, Ill., 1999)
(Table 5). Complete loss of response to abacavir appears to
require the combination of three or more NEMs together with
the mutation M184V (214; Costagliola, D., D. Descamps, V.
Calvez, B. Masquelier, A. Ruffault, F. Telles, J. L. Meynard,

and F. Brun-Vizinet, abstract 7, Antivir. Ther. 6:S8, 2001). The
extent to which NEMs interfere with response to tenofovir is
not known; however, preliminary data presented to the FDA
have shown that tenofovir usually retains antiviral activity even
in patients with extensive previous NRTI therapy.

The NEMs reduce zidovudine susceptibility more than any
other drug. Both K70R and T215Y cause reproducible reduc-
tions in drug susceptibility regardless of the susceptibility assay
used. Phenotypic resistance to other NRTIs generally requires
multiple NEMs. The presence of four or more NEMs will
typically cause �100-fold decreased susceptibility to zidovu-
dine, five- to sevenfold decreased susceptibility to abacavir, but
usually not more than two- to threefold decreased susceptibil-
ity to stavudine, didanosine, zalcitibine, and tenofovir (134,
217, 230, 250, 259, 262, 354, 398).

The NEMs cause minimal lamivudine resistance and do not
greatly compromise lamivudine activity (3) except to the extent
that they interfere with the synergism between lamivudine and
zidovudine and lamivudine and stavudine. One abstract that
correlated the presence of NEMs with low-level lamivudine
resistance (Skowron, G., J. Whitcomb, M. Wesley, C. Petro-
poulos, N. Hellmann, M. Holodniy, J. Kolberg, J. Detmer,
M. T. Wrin, and K. Frost, abstract 81, Antivir. Ther. 4[Suppl.
1]:55, 1999) relied on a point mutation assay and did not
account for other RT mutations which were likely to have
explained the results (e.g., codons 44 and 118 [147]).

M184V

M184V causes high-level (�100-fold) lamivudine resistance
and emerges rapidly in patients receiving lamivudine mono-
therapy (26, 326, 377). This mutation is also usually the first to
develop in isolates from patients receiving incompletely sup-
pressive lamivudine-containing regimens (81, 142, 236, 266a).
M184V is also selected during therapy with abacavir (134, 261,
376) and less commonly during therapy with zalcitibine and
didanosine (122, 351, 410). M184V causes about 2-fold resis-
tance to these drugs (122, 263, 290, 376, 410).

M184I results from a G to A mutation (ATG to ATA) and
usually develops before M184V in patients receiving lamivu-
dine because HIV-1 RT is more prone to G to A mutations
than to A to G mutations (ATG to GTA) (174, 189). Although
M184I also causes high-level resistance to lamivudine, the en-
zymatic efficiency of M184I is less than that of M184V and
nearly all patients with mutations at this position eventually
also develop M184V (107).

M184V alone renders lamivudine ineffective but may not
significantly compromise virologic response to treatment with
abacavir (145, 179, 391, 399a). However, M184V in combina-
tion with multiple zidovudine resistance or in combination with
mutations at positions 65, 74, or 115 leads to both in vitro and
in vivo abacavir resistance (134, 179, 277, 343; Lanier, R., J.
Scott, H. Steel, B. Hetherington, M. Ait-Khaled, G. Pearce, W.
Spreen, and S. Lafon, abstract 82, Antivir. Ther. 4[Suppl. 1]:56,
1999). The effect of M184V on the virologic response to di-
danosine-containing regimens has been less well studied
though in one small observational study showed that in heavily
treated patients infected with isolates containing multiple
NEMs and M184V, a change from lamivudine to didanosine
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was usually associated with an RNA decrease of �0.5 log10

RNA (315).
Position 184 is in a conserved part of the RT close to the

active site. M184V sterically hinders certain NRTIs, particu-
larly lamivudine, while still allowing the enzyme to function
(318). The possibility that isolates containing M184V are com-
promised was suggested by the initial lamivudine monotherapy
studies which showed that RNA levels remained about 0.5 log
copies below their starting value in patients receiving lamivu-
dine for 6 to 12 months despite the presence of lamivudine-
resistant isolates containing M184V (98, 167, 296). Several
studies have shown that in vitro RT enzymes with M184V
displayed increased fidelity (89, 275, 396) and others decreased
processivity (12, 13, 28, 348). The clinical significance of these
biochemical studies is not known and the increased fidelity
does not appear to limit the ability of HIV to develop new
mutations under continued selective drug pressure (176, 190).

M184V reverses T215Y-mediated zidovudine resistance (26,
223, 377); in plaque-forming assays, HIV-1 isolates containing
M41L/T215Y displayed 64-fold resistance, while isolates con-
taining M41L/T215Y and M184V were just 4-fold resistant.
Resensitization may be due to the ability of M184V to impair
the rescue of chain-terminated DNA synthesis (115) and does
not appear to apply to zidovudine resistance caused by Q151M
(342). This resensitization is probably clinically significant and
explains the slow evolution of phenotypic zidovudine resis-
tance in patients receiving zidovudine plus lamivudine (209,
223, 247). Resensitization, however, can be overcome by the
presence of four or more zidovudine resistance mutations (343,
377). M184V also appears to reverse the effect of the classical

zidovudine mutations on resistance to stavudine and tenofovir,
but not abacavir (89, 257, 270, 277).

Mutations at Codons 65, 69, 74, and 75

Positions 64 to 72 form a loop between the �2 and �3 strands
in the fingers region of the RT, which makes important con-
tacts with the incoming dNTP during polymerization (158,
319). In addition to the zidovudine-resistance mutations at
codons 67 and 70, this region contains several other NRTI-
resistance mutations. The most common mutations in this re-
gion occur at position 69 and include T69D/N/S/A, as well as
single and double amino acid insertions.

T69D was initially identified as causing resistance to zalcitib-
ine (104) but substitutions at this position have since been
reported after treatment with each of the available NRTIs. In
site-directed mutagenesis studies, other mutations at this po-
sition including T69N, T69S, and T69A have been shown to
confer resistance to zidovudine, didanosine, zalcitibine, and
stavudine (404a). It also appears likely that mutations at posi-
tion 69 may contribute to resistance to each of the NRTIs
when they occur together with NEMs (149, 257, 397, 404a).

Insertions at position 69 occur in about 2% of heavily
treated HIV-1-infected patients (390). By themselves, these
insertions cause low-level resistance to each of the NRTIs, but
isolates containing insertions together with T215Y/F and other
zidovudine-resistance mutations have high-level resistance to
each of the NRTIs (63, 218, 248, 373, 406). Insertions at this
position are associated with about 20-fold resistance to teno-
fovir, which is the highest reported level of resistance to this

TABLE 5. Correlations between HIV-1 NRTI resistance mutations and response to a treatment regimena

Study Previous regimen Follow-up regimen Wk Effect of baseline mutations on response to follow-up ART

Holodniy (155) AZT AZT�ddI 30 The presence of AZT resistance mutations, particularly T215Y,
predicted a poor outcome in patients receiving salvage ther-
apy with AZT�ddI, AZT�ddI�NVP, d4T�ddI, AZT�3TC,
and d4T�3TC. It did not appear to limit the effectiveness of
AZT�3TC�RTV and AZT�3TC�IDV.

Mayersb AZT AZT�ddI or
AZT�ddI�NVP

24

Izopet (169) AZT�ddC d4T�ddI 24
Japour (173) AZT AZT or ddI 52
Montaner (266) AZT D4T�3TC 48
Kuritzkes (208) AZT AZT�3TC�RTV 48
Gulick (123) AZT AZT�3TC�IDV 156
Havlir (143) AZT � ddI, ddC, d4T AZT/3TC/IDV followed

by AZT/3TC
�24 T215Y did not limit the effectiveness of AZT/3TC/IDV but was

strongly associated with virologic failure during AZT/3TC
maintenance.

Shulman (353) AZT d4T 12 K70R alone did not prevent a subsequent virologic response to
d4T. All other combinations of AZT mutations did interfere
with a subsequent response.

Rusconi (315) NRTI (including 3TC),
PI � NNRTI

Change from 3TC to
ddI

8 In 6 of 8 patients infected with HIV-1 isolates containing
M184V � multiple classical AZT resistance mutations, RNA
decreased �0.5 log.

Albrecht (3) NRTI NRTI�NFV vs.
NRTI�EFV vs.
NRTI�NFV�EFV

195 Addition of 3TC was associated with an improved virologic re-
sponse in patients without M184V.

Katlama (179) NRTI, NNRTI, PI Addition of ABC 16 M184V did not preclude an antiviral response; 73% of subjects
with M184V had a �1.0 log reduction in plasma HIV-1 RNA.

Lanierc NRTI, NNRTI, PI Addition of ABC 12–24 The presence of �3 AZT resistance mutations, particularly
when present with M184V, was associated with a poor viro-
logic response. The presence of M184V alone was not.

a Abbreviations: ABC, abacavir, AZT, zidovudine, ddC, zalcitibine; ddI, didanosine, d4T, stavudine, IDV, indinavir, NVP, nevirapine, 3TC, lamivudine.
b Mayers et al., 6th Conf. on Retroviruses, abstr 129, 1999.
c Lanier et al., Antivir. Ther. 4(Suppl. 1):56, abstr. 82, 1999.
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drug (258). The precise mechanism by which this mutation
causes resistance is not known with certainty but one paper
suggests that higher levels of resistance occur in the presence
of ATP suggesting that this mutation may act in a manner
similar to the NEMs by causing ATP-mediated primer un-
blocking (230). Single amino acid deletions between codons 67
to 70 occur in �1% of heavily treated patients (164 to 166,
405). These deletions contributes to resistance to each of the
NRTIs in patients with viruses containing multiple NRTI mu-
tations.

L74V occurs commonly during didanosine and abacavir
monotherapy (202, 261, 338, 410) and confers two- to fivefold
resistance to didanosine and zalcitibine (368, 410) and two- to
threefold resistance to abacavir (376). L74V is sufficient to
cause virologic failure in patients receiving didanosine mono-
therapy (202) but additional mutations may be required to
cause virologic failure to abacavir monotherapy. L74V causes
hypersensitivity to zidovudine and possibly also to stavudine
(368) and is consequently rarely observed in patients receiving
dual nucleoside therapy with didanosine/zidovudine or didano-
sine/stavudine (49, 200, 285, 335, 338). L74V has also been
shown to be cause decreased RT processivity in enzymatic
studies and decreased replication in cell culture (347, 348).

K65R confers intermediate levels of resistance to di-
danosine, abacavir, zalcitibine, lamivudine, and tenofovir (120,
121, 259, 261, 290, 359, 367, 376, 397, 419). This mutation has
been shown to increase the replication fidelity of HIV-1 RT in
vitro and to cause increased enzymatic processivity mediated
by a decrease in the rate of template-primer dissociation (5,
344). K65R occurs rarely in vivo (404, 413), and the biological
and clinical significance of these biochemical findings are not
known.

V75T develops in isolates cultured in the presence of in-
creasing concentrations of stavudine and causes about fivefold
resistance to stavudine, didanosine, and zalcitibine (212). Bio-
chemical data and modeling data suggest that mutations at this
position cause drug resistance through nucleotide discrimina-
tion and possibly also through a non-ATP-mediated mecha-
nism of primer unblocking (230, 327). V75T occurs rarely even
in patients receiving stavudine. V75I generally occurs in iso-
lates that also have the multinucleoside resistance mutation,
Q151M. The phenotypic effects of other mutations at this po-
sition including V75 M/A have not been well-characterized.

Multinucleoside Resistance Due to Q151M

Q151M is a 2-bp change in a conserved RT region that is
close to the first nucleotide of the single-stranded nucleotide
template (158, 350). This mutation develops in up to 5% of
patients who receive dual NRTI therapy with didanosine in
combination with zidovudine or stavudine (49, 181, 285, 323,
335, 338, 390). Q151M alone causes intermediate levels of re-
sistance to zidovudine, didanosine, zalcitibine, stavudine, and
abacavir (168, 342, 350, 389). Q151M is generally followed by
mutations at positions 62, 75, 77, and 116. Isolates with V75I,
F77L, F116Y, and Q151M have high-level resistance to each of
these NRTIs, low-level resistance to lamivudine and tenofovir
(259, 277). HIV-1 isolates with Q151M usually contain few, if
any, NEMs.

Other NRTI Resistance Mutations

E44DA and V118I each occur in about 1% of untreated
individuals (177). The prevalence of these two mutations is
much higher in isolates obtained from patients receiving dual
NRTI combinations, particularly in isolates containing multi-
ple zidovudine resistance mutations (74, 177). When present in
combination, E44D and V118I cause intermediate lamivudine
resistance (147). However, the frequent occurrence of these
mutations even in patients who have not received lamivudine
suggests a much broader role.

G333E is a polymorphism that has been reported in 4 of 70
(6%) untreated persons and 26 of 212 (12%) of persons re-
ceiving NRTIs (109). G333E has been reported to facilitate
zidovudine resistance in isolates from patients receiving zido-
vudine and lamivudine who also have multiple NEMs (184).
However, dual resistance to these drugs usually emerges with-
out this change (247, 343). There are no data suggesting that
this mutation by itself reduces zidovudine susceptibility. Two
abstracts have suggested that in some isolates the common
polymorphisms R211K and L214F also facilitate dual zidovu-
dine and lamivudine resistance in the presence of mutations at
positions 41, 184, and 215 (262, 380). P157A/S is a rare muta-
tion associated with lamivudine resistance. This mutation was
first identified in a feline immunodeficiency virus isolate cul-
tured in the presence of lamivudine and has subsequently
shown to be associated with high-level lamivudine resistance
even in isolates lacking M184V (291, 362, 363).

NRTI Cross-Resistance Patterns

The NEMs confer some degree of clinically significant re-
sistance to all NRTIs except lamivudine. The lamivudine resis-
tance mutation, M184V, confers some degree of cross-resis-
tance to all NRTIs except zidovudine, stavudine, and tenofovir.
Indeed, M184V and several other NRTI-resistance mutations
including L74V and possibly K65R (226) interfere with the
effect of the NEMs. The mutational antagonism between the
NEMs and several of the mutations that act by allowing RT to
discriminate against NRTIs probably explains the clinical syn-
ergism observed with certain dual NRTI combinations such as
zidovudine/lamivudine, stavudine/lamivudine, zidovudine/di-
danosine, and stavudine/didanosine.

High-level resistance to both drugs in a dual NRTI combi-
nation usually requires multiple NRTI resistance mutations.
Two genetic mechanisms of multidrug resistance have received
much attention: (i) Q151M usually together with V75I, F77L,
and F116Y; and (ii) a double amino acid insertion at position
69 in combination with T215Y/F and other NEMs. These two
mutational patterns, however, are responsible for only a mi-
nority of multidrug resistant isolates. Multidrug resistance
more commonly results from a combination of �4 NEMs,
M184V, and 1 to 2 mutations in the �2-�3 loop, particularly at
position 69.

The extent of cross-resistance between one dual NRTI com-
bination and a second dual NRTI combination is currently
being evaluated in clinical trials (360). Preliminary data suggest
that patients switching from one dual NRTI combination to a
second dual NRTI combination will generally have some re-
sponse as long as high-level resistance to the first combination
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has not yet emerged. Because of the high-level of cross-resis-
tance between zidovudine and stavudine, it is unlikely that
substituting one drug for the other is likely to be highly effec-
tive. There appears to be less clinical cross-resistance between
lamivudine and didanosine and a salvage regimen that substi-
tutes one of these drugs for the other is likely to have some
activity.

The optimal uses of abacavir and tenofovir, the two most
recently approved NRTIs have not yet been defined. In previ-
ously untreated patients, abacavir is highly potent, reducing
plasma HIV-1 RNA levels by �1.5 log10 copies/ml. Its activity
in treated patients, however, is compromised by the fact that a
combination of M184V together with �3 NEMs appear to
prevent a clinical response to the addition of this drug (214).
This would suggest that its main role should be as part of an
initial treatment regimen and not for salvage therapy. Prelim-
inary data presented to the FDA from phase III trials in which
tenofovir was added to a failing treatment regimen suggest that
this drug may be uniquely effective (reducing plasma HIV-1
RNA levels by �0.7 log10 copies/ml) in heavily treated patients
harboring viruses resistant to most other NRTIs. The useful-
ness of tenofovir in salvage therapy should not necessarily
preclude a possible role in initial therapy.

NNRTI RESISTANCE MUTATIONS

The NNRTIs bind to a hydrophobic pocket in the RT en-
zyme close to, but not contiguous with, the active site. These
compounds inhibit HIV-1 replication allosterically by displac-
ing the catalytic aspartate residues relative to the polymerase
binding site (100, 198, 365). The mutations responsible for
NNRTI resistance are in the hydrophobic pocket which bind
the inhibitors (Fig. 3). A single mutation in this pocket may
result in high-level resistance to one or more NNRTIs. Resis-
tance usually emerges rapidly when NNRTIs are administered
as monotherapy or in the presence of incomplete virus sup-
pression, suggesting that resistance may be caused by the se-
lection of a pre-existing population of mutant viruses within an
individual (57, 141, 170, 400). Like many of the PI and NRTI
resistance mutations, some of the NNRTI resistance mutations
may also compromise virus replication. Two mechanisms of
impaired replication have been proposed: changes in the con-
formation of the dNTP binding pocket (194, 389) and changes
in RNase H activity (4, 112).

NNRTIs

There are three FDA-approved NNRTIs: nevirapine,
delavirdine, and efavirenz. The hydrophobic binding pocket
to which the NNRTIs bind is less well conserved than the
dNTP binding site. Indeed, HIV-1 group O and HIV-2 (80,
151, 349, 415) are intrinsically resistant to most NNRTIs.
The FDA-approved NNRTIs are highly active against group
M HIV-1 isolates and the dynamic susceptibility range for
each of the NNRTIs is greater than 100-fold. Wild-type
HIV-1 group M isolates tend to have greater interisolate
variability in their susceptibility to NNRTIs than to NRTIs
and PIs (33). However, preliminary data suggest that the
moderate (�10-fold) decreases in NNRTI susceptibility that
have been reported in the absence of previous NNRTI ther-

apy or known NNRTI resistance mutations do not interfere
with the virologic response to an NNRTI-containing highly
active antiretroviral therapy (HAART) regimen (Bacheler,
L., L. Ploughman, K. Hertogs, and B. Larder, abstract 88,
Antivir. Ther. 5[Suppl. 3]:70, 2000; Harrigan, P. R., W.
Verbiest, B. Larder, K. Hertogs, J. Tilley, J. Raboud, and
J. S. Montaner, abstract 86, Antivir. Ther. 5[Suppl. 3]:68–69,
2000).

NNRTI Mutations between Codons 98 and 108

K103N occurs more commonly than any other mutation in
patients receiving NNRTIs (11, 57, 69, 78, 129) and causes
20- to 50-fold resistance to each of the available NNRTIs
(11a, 78, 290, 418). Although this degree of resistance is less
than the highest levels of resistance observed with these
drugs, K103N by itself appears sufficient to cause virologic
failure with each of the NNRTIs (44, 78, 175, 355). It has
been proposed that K103N may have minimal effects on
viral fitness and that this mutation can result in a virus that
is both resistant and highly fit (69). Structural studies of
HIV-1 RT with K103N in both unliganded and bound to an
NNRTI have shown that the structure is only minimally
changed in that in the unliganded form it forms a network of
hydrogen bonds that are not present in the wild-type enzyme
(157). These changes are likely to stabilize the closed pocket
form of the enzyme and interfere with the ability of inhib-
itors to bind to the enzyme. A different mutation at position
103, K103R, occurs in 2 to 3% of patients not receiving
NNRTIs and has not been reported to cause NNRTI resis-
tance (177).

V106A causes �30-fold resistance to nevirapine, intermedi-
ate resistance to delavirdine, and low-level resistance to efa-
virenz (18, 38, 95, 108, 220, 284, 290, 418). L100I causes inter-
mediate resistance to efavirenz and delavirdine and low-level
resistance to nevirapine (37, 38, 108, 290, 403, 418). L100I
usually occurs with K103N in patients receiving efavirenz and
significantly increases efavirenz resistance in these isolates
(11). A98G, K101E, and V108I each cause low-level resistance
to each of the NNRTIs (11a, 37, 290, 418).

NNRTI Mutations between Codons 179 and 190

Y181C/I causes �30-fold resistance to nevirapine and dela-
virdine and 2 to 3-fold resistance to efavirenz (37, 38, 290, 418).
Nonetheless, nevirapine-treated patients with isolates contain-
ing Y181C generally have only transient virologic responses to
efavirenz-containing salvage regimens (355, 398a). It is not
known whether virologic failure in this setting is due to low-
level Y181C-mediated efavirenz resistance or to the presence
of a subpopulation of viruses containing K103N that predom-
inate upon exposure to efavirenz.

Y188C/L/H causes high-level resistance to nevirapine and
efavirenz and intermediate resistance to delavirdine (38, 108,
290, 418). G190A/S causes high-level resistance to nevirapine
and efavirenz but do not cause in vitro resistance to delavirdine
(11a, 108, 290). There are no clinical data, however, on the
usefulness of delavirdine in patients harboring isolates with
these mutations. V179D causes low-level (about twofold) re-
sistance to each of the NNRTIs (38, 195, 403, 418).
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NNRTI Mutations between Codons 225 and 236

P225H causes low-level resistance to efavirenz and possibly
nevirapine. By itself, P225H causes delavirdine hypersuscepti-
bility. However, it usually occurs with K103N in patients re-
ceiving efavirenz (11, 11a, 284). M230L is a recently identified
uncommon mutation that causes about 20-fold resistance to
efavirenz, 40-fold resistance to nevirapine, and 60-fold resis-
tance to delavirdine (Huang, W., N. T. Parkin, Y. S. Lie, T.
Wrin, R. Haubrich, S. Deeks, N. Hellmann, C. J. Petropoulos,
and J. M. Whitcomb, abstract 30, Antivir. Ther. 5[Suppl. 3]:24–
25, 2000). P236L is an uncommon mutation that causes high-
level resistance to delavirdine and hypersusceptibility to nevi-
rapine (78, 91, 160). P236L causes slowing of both DNA 3�-
end- and RNA 5�-end-directed RNase H cleavage possibly
explaining the markedly decreased replication of isolates with
this mutation (112). F227L and L234I cause resistance to two
experimental NNRTI but their effect on current NNRTIs is
not known (18, 108).

Other NNRTI Resistance Mutations

Mutations at codon 138 (e.g., E138K) have been shown to
confer resistance to an experimental group of NNRTIs,
called the TSAO inhibitors (17), but do not cause resistance
to the currently approved NNRTIs (283). This mutation
exerts its effect via the p51 subunit of HIV-1 RT, which lies
close to the NNRTI binding pocket (17). Mutations at po-
sition 135 and 283 have been shown to cause low-level re-
sistance to NNRTIs, particularly when present in combina-
tion (33). Y318F is a mutation in the NNRTI-binding pocket
which causes high-level resistance (about 40-fold) to dela-
virdine and low-level resistance (�3-fold) resistance to ne-
virapine and efavirenz (183). However, this mutation rarely
occurs in the absence of other major NNRTI resistance
mutations.

NNRTI Mutation Interactions

Mutational interactions within the NNRTI class (e.g., hyper-
susceptibility caused by P225H and P236L) have not yet been
shown to be clinically significant in that there has been no
demonstrated benefit of using NNRTIs either in combination
or in sequence. Mutational interactions between NNRTI re-
sistance mutations and NRTI-resistance mutations, however,
will probably prove to be clinically relevant. It has been known
for several years that Y181C and L100I hypersensitize HIV-1
to zidovudine (215, 216), and recently it has been shown that
some NRTI-resistance mutations appear to hypersensitize
HIV-1 to certain NNRTIs (352; Haubrich, R., J. Whitcomb, P.
Keiser, C. Kemper, M. Witt, M. Dube, D. Forthal, M. Leibo-
witz, J. Hwang, A. Rigby, N. Hellmann, J. A. McCutchan, and
D. Richman, abstract 87, Antivir. Ther. 5[Suppl. 3]:69, 2000;
Whitcomb, J., S. Deeks, D. Huang, T. Wrin, E. Paxinos, K.
Limoli, R. Hoh, N. Hellmann, and C. Petropoulos, abstract
234, 7th Conference on Retroviruses and Opportunistic Infec-
tion, San Francisco, Calif., 2000). Although multidrug resis-
tance to both NRTIs and NNRTIs occurs commonly (95, 220,
352), the interactions suggest that the number of ways in which
HIV-1 can develop simultaneous high-level resistance to both
NRTIs and NNRTIs may be restricted. These interactions may
also help explain the success of dual NRTI/NNRTI-containing
regimens not only as part of initial therapy but also in certain
salvage therapy situations (3, 206; Haubrich, R., J. Whitcomb,
P. Keiser, C. Kemper, M. Witt, M. Dube, D. Forthal, M.
Leibowitz, J. Hwang, A. Rigby, N. Hellmann, J. A. McCutchan,
and D. Richman, abstract 87, Antivir. Ther. 5[Suppl. 3]:69,
2000).

HIV-1 FUSION INHIBITORS

The HIV-1 envelope glycoprotein consists of two nonco-
valently associated subunits, a surface glycoprotein (gp120)

FIG. 3. Structural model of HIV-1 RT labeled with NNRTI resistance mutations. The polypeptide backbone of the complete p66 subunit
(positions 1 to 560) and DNA primer and template strands are shown. This drawing is based on the structure published by Kohlstaedt et al. (199)
in which the RT is cocrystallized with nevirapine, which is displayed in space-fill mode. The positions associated with NNRTI resistance are shown
surrounding the hydrophobic pocket to which nevirapine and other NNRTIs bind.
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and a transmembrane glycoprotein (gp41). Portions of gp120
bind to both the CD4 receptor and to one of the chemokine
receptors on target cells. After gp120-CD4-coreceptor binding,
the gp41 subunit undergoes a conformational change that pro-
motes fusion of viral and cellular membranes, resulting in entry
of the viral core into the cell. This conformational change
results in a transient species, termed the prehairpin interme-
diate in which gp41 exists simultaneously as a membrane pro-
tein in both the viral and cellular membranes (94).

Recent crystallographic studies of gp41 fragments show that
two heptad repeat domains form a helical bundle containing
trimers of each domain (45). The first successful inhibitors of
viral entry were synthetic peptides corresponding to predicted
alpha helical regions of the HIV-1 gp41 sequences. One of
these peptides, T-20 (pentafuside; Trimeris, Durham, N.C.),
corresponds to residues 127 to 162 of the outer layer of gp41.
When this peptide was administered intravenously over a two-
week period the median plasma HIV-1 RNA levels of subjects
receiving the higher dose levels (100 mg twice daily) declined
100-fold (192).

The extraviral portion of gp41 is the most conserved region
in the HIV-1 envelope glycoprotein, which otherwise displays
considerable genetic diversity. Yet HIV-1 isolates resistant to
T-20 have been derived by culturing HIV-1 in the presence of
increasing concentrations of the peptide. Sequence analysis of
the resistant isolates demonstrated that a contiguous 3-amino-
acid sequence (codons 36 to 38) within the amino-terminal
heptad repeat motif of gp41 is associated with resistance (306).
T-1249 is another injectable fusion inhibitor developed by Tri-
meris that has a longer half-life and retains activity against
T-20-resistant isolates. Additional fusion inhibitors in develop-
ment include other peptides, antibodies, and small molecules
that bind to either gp41 or the chemokine receptors CCR5 and
CXCR4.

TECHNICAL ASPECTS OF HIV-1 GENOTYPIC
TESTING IN CLINICAL SETTINGS

The following subsections review the source of virus used for
sequencing in clinical settings, the method of preparing nucleic
acid material for sequencing, methods of sequencing, methods
of sequence quality control, and the approach to analyzing
HIV-1 isolates belonging to non-B subtypes. More detailed
reviews of some of these issues have been covered in other
recent reviews on the technical aspects of HIV-1 genotypic
testing (75, 128, 341, 392).

Source of Virus and Initial Sample Processing

Plasma is the main source of virus used for testing HIV-1
drug resistance in clinical settings. Because the half-life in of
HIV-1 in plasma is approximately 6 h, only actively replicating
virus can be isolated from this source; thus the sequence of
plasma virus represents the quasispecies most recently selected
for by antiretroviral drug therapy (287). Plasma is easier to
process and store than peripheral blood mononuclear cells and
the evolution of HIV-1 drug resistance in peripheral blood
mononuclear cell virus lags behind that in plasma (197, 203,
356, 361, 400). Because HIV-1 genotypic testing requires the
extraction, reverse transcription, and PCR amplification of a

larger segment of the HIV-1 genome (�1 kb) than used for
assays designed quantitative assays (about 100 bp) the sensi-
tivity of most genotypic assays is generally reduced compared
with quantitative assays with a lower limit of detection of
between 100 and 1,000 RNA copies/ml, depending on the
assay.

Population-Based versus Clonal Sequencing

Clonal sequencing is performed in research settings to an-
swer questions about the evolution of HIV-1 drug resistance.
Direct PCR or population-based sequencing is done in clinical
settings because it is quicker and more affordable than se-
quencing multiple clones. For both population-based and
clonal sequencing, the ability to detect minor variants is related
to the proportion of the minor variants within the whole virus
population. In direct PCR sequencing, a nucleotide mixture
can be detected when the least common nucleotide is present
in at least 20% of the total virus population. (62, 125, 225, 325,
340).

Dideoxynucleotide Sequencing

Dideoxynucleotide sequencing is the most commonly used
method for HIV-1 sequencing. One commercial HIV-1 RT
and protease genotyping kit has been approved by the FDA for
use in clinical settings (47a, 380a); a second kit is under con-
sideration for FDA approval (61a, 267a). These kits have
stronger quality control and validation profiles than home brew
methods which will make them preferable in clinical laborato-
ries. However, these kits are more expensive and may not
provide the versatility of current home brew methods. The
assays in these kits differ technically but are similar in overall
complexity. In one recent comparison they had similar perfor-
mance (96).

Several studies indicate that dideoxynucleotide sequencing
is highly reproducible in experienced laboratories. In one
study, 13 research laboratories were shipped cell pellets from
cultured HIV-1 isolates (76). The sequence concordance
among laboratories was 99.7% at all nucleotide positions and
97% at positions associated with zidovudine resistance. Se-
quencing cultured cell pellets is simpler than sequencing
plasma because RNA extraction and reverse transcription are
not necessary and because cultured virus is more homogeneous
than uncultured virus (73, 210). Nonetheless, the high inter-
laboratory concordance in this study attests to the intrinsic
reliability of the dideoxy method for HIV-1 analysis.

Two large multicenter comparisons of sequence results ob-
tained from samples containing mixtures of plasmid clones
(ENVA-1) and spiked plasma samples (ENVA-2) have also
been performed (325, 325a). These studies found that the
ability of the participating laboratories to detect mutations was
directly proportional to the percent of mutant plasmid clones
within each mixture. Only a minority of laboratories detected
mutations in mixtures in which the mutant clones made up less
than 25% of the total.

Two clinical laboratories also assessed the reproducibility of
HIV-1 RT and protease sequencing using plasma aliquots ob-
tained from 46 heavily treated HIV-1 infected individuals
(333). Although both laboratories used sequencing reagents
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from Applied Biosystems (Foster City, Calif.), each used a
different in-house protocol for plasma HIV-1 RNA extraction,
reverse transcription, PCR, and sequencing. Overall sequence
concordance between the two laboratories was 99.0%. Approx-
imately 90% of the discordances were partial, defined as one
laboratory detecting a mixture while the second laboratory
detected only one of the mixture’s components. Discordance
was significantly more likely to occur in plasma samples with
lower plasma HIV-1 RNA levels. Nucleotide mixtures were
detected at approximately 1% of the nucleotide positions, and,
in every case in which one laboratory detected a mixture, the
second laboratory detected either the same mixture or one of
the mixture’s components. The high concordance in detecting
mixtures and the fact that most discordance between the two
laboratories was partial suggest that most discordances were
due to variation in sampling the HIV-1 quasispecies rather
than to technical errors.

Hybridization Methods

Sequencing by hybridization can determine the complete
sequence of an unknown DNA molecule or detect specific
mutations. The Affymetrix GeneChip is designed to determine
the complete sequence of HIV-1 protease and the first 1,200
nucleotides of HIV-1 RT. The INNO-LiPA HIV-1 line probe
assays (Innogenetics, Ghent, Belgium) are point mutation as-
says designed to detect specific HIV-1 protease and RT mu-
tations.

The GeneChip is divided into several thousand segments
each containing millions of similar probes designed to interro-
gate every nucleotide position in a test DNA or RNA mole-
cule. Every nucleotide in the test molecule requires at least
four sets of oligonucleotide probes to determine whether that
nucleotide is an A, C, G, or U. It is essential that the probe
hybridizes perfectly to the nucleotides on either side of the
position being interrogated. The design or tiling of Affymetrix
gene chips therefore requires prior knowledge of the most
commonly expected polymorphisms in a gene. Because of this
requirement, this method of sequencing is also referred to as
resequencing.

Because of its genetic variability, sequencing HIV-1 by hy-
bridization is challenging. Several studies have compared the
performance of the GeneChip to dideoxynucleotide cycle se-
quencing and most have found that dideoxynucleotide se-
quencing is more reliable at detecting HIV-1 RT and protease
mutations (125, 130, 386, 402). DNA chips are also not capable
of detecting insertions or deletions in viral sequences and are
unreliable at sequencing viral subtypes other than subtype
B—the subtype on which the chip tiling has been based. In
addition, genomic regions containing clusters of adjacent mu-
tations can interfere with probe hybridization and result in
frank errors (130, 386). Improved microarrays for sequencing
isolates belonging to subtypes A-F and for detecting insertions
are under development (Myers, T., D. Birch, V. Bodepudi, D.
Fong, D. Gelfand, K. L. A., R. Nersesian, R. Shahinian, C.
Sigua, N. Schonbrunner, R. Resnick, K. Wu, and T. Ryder,
abstract 49, Antivir. Ther. 5[Suppl. 3]:172, 2000).

Point mutation assays are inexpensive and have the potential
to be highly sensitive for mutations present in only a small
proportion of circulating viruses (328, 388). Because they re-

quire only simple laboratory equipment, they may be useful in
areas that do not have ready access to sophisticated sequenc-
ers. The INNO-LiPA assays have probes for wild-type and
mutant alleles of each codon attached to a nitrocellulose strip
(48, 371). Biotin-labeled RT-PCR product from the patient
sample is hybridized to the strip. An avidin-enzyme complex
and the enzyme substrate produce a color change on the paper
strip where the PCR product has hybridized with a probe. This
assay is limited because it can only detect a subset of drug
resistance mutations and has a 10% rate of uninterpretable
results due to poor hybridization, which is particularly likely to
occur when uncommon mutations are present at key codons
(298, 328).

Sequence Quality Control

Sequence quality control should aim at avoiding PCR con-
tamination and sample mix-ups, obtaining high quantities of
specific template DNA, and detecting as many mixtures as
possible. Laboratories should use standard physical precau-
tions to prevent sample contamination with DNA from other
sources (211) and negative controls should be run with each
PCR step. Alternate primers for reverse transcription and/or
PCR sequencing should be used on samples that cannot be
amplified despite plasma HIV-1 RNA levels �1,000 copies/ml.
Heat-stable RNase H� RT enzymes can be used to increase
the yield of the reverse transcription step. A uracil N-glycosy-
lase (UNG) system can be used to minimize contamination of
PCRs with products generated in previous amplifications.

Sequence analyses can detect the possibility of contamina-
tion with other samples studied during the same time period
(228). These analyses should compare each new sequence to
other recently generated sequences to look for unexpectedly
high levels of similarity. Phylogenetic trees can also be con-
structed to visually detect unexpectedly similar isolates. The
HIV Sequence Database at Los Alamos National Laboratories
has a tutorial to assist with sequence analysis for quality control
purposes (204).

Global HIV-1 Isolates

During its spread among humans, group M HIV-1 has
evolved into multiple subtypes that differ from one another by
10 to 30% along their genomes (201, 307). In North America
and Europe, most HIV-1 isolates belong to subtype B and the
available anti-HIV drugs have been developed by drug screen-
ing and susceptibility testing using subtype B isolates. How-
ever, subtype B accounts for only a small proportion of HIV-1
isolates worldwide and non-B isolates are being identified with
increasing frequency, particularly in Europe.

A few studies have tested the in vitro susceptibility of non-
subtype B HIV-1 isolates to antiretroviral drugs. Although
group O isolates often demonstrate intrinsic resistance to the
NNRTIs (80, 299), most studies have shown that non-B group
M isolates are as susceptible as subtype B isolates to each of
the three anti-HIV drug classes (276, 331, 332, 374). There is
no evidence for novel drug resistance mutations in non-B
HIV-1 isolates and most available data suggest that drug re-
sistance mutations described in the context of subtype B iso-
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lates will exert the same phenotypic effects in all HIV-1 sub-
types.

Intersubtype genetic variability may complicate HIV-1 geno-
typing because primers used for reverse transcription, PCR,
and sequencing may have a lower rate of annealing to non-B
compared with subtype B templates. But the extent to which
this occurs has not been studied. Both the Applied Biosystems
ViroSeq HIV-1 Genotyping System have been used for the
analysis of non-B isolates, but the primers used in both com-
mercial systems are proprietary (98a, 267a) and the Visible
Genetics TRUGENE HIV-1 Genotyping System (213).

GENOTYPIC INTERPRETATION

General Principles

HIV-1 drug resistance is rarely an all-or-none phenomenon.
Clinicians treating infected patients usually need the answers
to the following two questions: (i) Does the genotype suggest
that the patient will respond to a drug in a manner comparable
to a patient with a wild-type isolate? (ii) Does the genotype
suggest that the patient will obtain any antiviral benefit from
the drug? The second question distinguishes antiviral suscep-
tibility testing from anti-bacterial susceptibility testing. In the
case of bacteria, it is usually possible to avoid using any drug
with reduced susceptibility against a pathogen. This is usually
not possible in the case of HIV, however, because of the extent
of cross-resistance within each class of HIV drugs. To answer
both these questions it is necessary to grade the extent of
inferred resistance relative to the wild type and to the most
resistant isolates (e.g., low-level, intermediate, and high-level).

Genotypic results bear little resemblance to those of a typ-
ical antimicrobial susceptibility assay. Rather than receiving a
result such as susceptible or resistant for each of the available
HIV drugs, the ordering clinician receives a list of mutations
present in the virus isolate. The difficulty in understanding the
results of these genotypic assays and the fact that genotypic
interpretation is independent of the process of genotyping
makes it an ideal application for a computerized expert system.
Laboratories doing HIV-1 genotyping can provide physicians
with the option of receiving a file with the sequence data
(string of nucleotides or list of amino acid differences from
consensus). Such data can then be analyzed by interpretation
systems other than those used by the sequencing laboratory.

An expert system performs reasoning over representations
of human knowledge. It consists of a computerized knowledge
base and an inference engine. A computerized knowledge base
has benefits for patients, clinicians, and researchers because it
can identify gaps in what is known about drugs and drug re-
sistance mutations and homogeneous data, such as genotype-
phenotype correlations, are amenable to machine learning al-
gorithms. In contrast, diverse forms of data such as phenotypic
and clinical data, are amenable to rules-based algorithms. Ta-
ble 6 describes the requirements of an expert system for HIV-1
genotypic interpretation: data input, knowledge base, infer-
ence engine, and data output.

Table 7 describes several of the most commonly used sys-
tems for HIV-1 genotypic interpretation. During the next one
to two years, these algorithms will evolve and most likely con-
verge through an ongoing process of interalgorithm compari-

son and validation using clinical data sets. This is because there
is probably more concordance among clinical virologists than is
currently reflected in published algorithms. It is unlikely that
algorithms will remain proprietary because there is no prece-
dent for basing important medical decisions on proprietary
unpublished data. The following two sections explore two al-
gorithms in detail: VirtualPhenotype and the HIVDB algo-
rithm.

VirtualPhenotype

The VirtualPhenotype (Virco, Cambridge, United Kingdom,
and Mechelin, Belgium) is a pattern-matching algorithm that
uses a large genotypic-phenotypic correlative database to infer
phenotypic properties based on sequence data (Verbiest, W.,
M. Peeters, K. Hertogs, P. Schel, S. Bloor, A. Rinehart, N.
Graham, C. Cohen, and B. A. Larder, abstract 81, Antivir.
Ther. 5[Suppl. 3]:62, 2000). The analysis includes a tabulation
of the number of matches in the database for each drug, and
the distribution of phenotypes (fold increase in IC50) for the
matching samples. The mean IC50 of the matching samples is
interpreted using a biologically defined, drug-specific cutoff
value, providing a quantitative prediction of drug resistance.
Although the VirtualPhenotype has been described in several
abstracts, there is no publication that describes the workings of
this approach in its entirety. Specifically, it is not known which
mutations are used to match a new sequence to those se-
quences that are already in the database.

The VirtualPhenotype has been shown to have a high cor-
relation with results from Virco’s recombinant phenotypic as-
say (Graham, N., M. Peeters, W. Verbeist, R. Harrigan, and B.
Larder, abstract 524, 8th Conference on Retroviruses and Op-
portunistic Infections, Chicago, Ill., 2001). It has also been
compared to rule-based algorithms using the data set from a
completed clinical trial (126). Further studies examining the
predictive value of the VirtualPhenotype using data from other
clinical trials is planned.

HIV RT and Protease Sequence Database

The HIV RT and Protease Sequence Database at Stanford
University is an online database (http://hivdb.stanford.edu)
that links sequence data to the HIV drug treatments of the
patients from whom the sequenced isolates were obtained and
to drug susceptibility results. The database also contains two
sequence analysis programs. HIV-SEQ accepts user-submitted
RT and protease sequences, compares them to a reference
sequence, and uses the differences as query parameters for
interrogating the sequence database (336). This allows users to
detect unusual sequence results immediately so that the person
doing the sequencing can check the primary sequence output
while it is still on the desktop. In addition, unexpected associ-
ations between sequences or isolates can be discovered by
immediately retrieving data on isolates sharing one or more
mutations with the sequence.

The second program, Drug Resistance Interpretation, is an
expert system that accepts user-submitted protease and RT
sequences and returns inferred levels of resistance to the 16
FDA-approved anti-HIV drugs. Each drug resistance mutation
is assigned a drug penalty score; the total score for a drug is
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derived by adding the scores of each mutation associated with
resistance to that drug. Using the total drug score, the program
reports one of the following levels of inferred drug resistance:
susceptible, potential low-level resistance, low-level resistance,
intermediate resistance, and high-level resistance. Genotypic
interpretations do not necessarily correlate with the inferred
level of phenotypic resistance because the genotypic interpre-
tation also uses correlations between genotype and clinical
outcome in deciding how a drug’s susceptibility should be
graded. A listing of all mutation/drug score pairs can be found
with the program’s release notes (http://hiv-4.stanford.edu/cgi
-test/hivtest-web.pl).

LIMITATIONS OF HIV-1 DRUG RESISTANCE TESTING

Several factors limit the utility of both genotypic and phe-
notypic testing. (i) There is a complex relationship between
drug resistance and clinical failure, often making it difficult to
discern the contribution of drug resistance to virologic failure.
(ii) The HIV-1 population within an individual consists of
innumerable variants and minor variants often go undetected.
(iii) Because of extensive cross-resistance within each drug
class, the results of resistance testing often leave clinicians with
few options for treatment.

Complex Relationship between Drug Resistance
and Disease Progression

Drug resistance is not the only cause of treatment failure.
Nonadherence, the use of insufficiently potent treatment reg-
imens, and pharmacokinetic factors that decrease the levels of
one or more drugs in a treatment regimen also contribute to
treatment failure. In addition, the natural history of HIV-1 is
highly variable and dependent on a complex set of host-virus
interactions (273). In the absence of therapy some patients
progress to advanced immunodeficiency within 3 years follow-
ing infection, whereas other patients remain healthy for more
than 15 years. It is likely that the same host-virus interactions
that so greatly influence disease progression in the absence of
drug therapy also influence the risk of virologic failure in
patients receiving anti-HIV therapy.

Two recent observations underscore the complexity of the
relationship between drug resistance and disease progression.
The first is that patients developing virologic failure on their
first treatment regimen are usually found to have HIV-1 iso-
lates with resistance to only one of the drugs in the regimen
(81, 110, 142, 236, 267, 268). The drugs to which resistance
most commonly develops in this situation are lamivudine and
the NNRTIs; resistance to PIs and NRTIs is less common in
patients with initial virologic failure. The fact that virus be-
comes detectable and replication ensues despite the fact that
the replicating virus remains sensitive to at least two drugs
suggests that factors in addition to drug resistance are contrib-
uting to virologic failure. Possibly the remaining drugs in the
regimen are not potent enough to fully suppress virus even
though they remain active. Alternatively, one of the presum-
ably “effective” drugs in the regimen may be present at insuf-
ficient levels because of nonadherence or pharmacokinetic fac-
tors.

The second observation is that virologic failure in patients

receiving HAART is not always followed by immunologic and
clinical deterioration (20, 71, 229, 295). This may be because
the immunologic benefits of virus suppression persist beyond
the period of virus suppression or because multidrug-resistant
viruses may be less virulent, particularly when they first emerge
and are associated with fewer compensatory mutations (83,
292).

Several lines of evidence suggest that drug-resistant viruses
are less fit than drug-susceptible viruses. First, in vitro exper-
iments have consistently shown that isolates containing pro-
tease and/or RT drug resistance mutations replicate less well in
cell culture and that purified enzymes with these mutations
usually have less activity than wild-type enzymes (reviewed in
reference 271). There are conflicting data, however, on wheth-
er multidrug-resistant variants are less cytopathic in specific
types of cells (e.g., thymus) (231, 286, 370). Second, drug re-
sistance mutations are often replaced in vivo by wild-type vari-
ants within weeks to months after removal of selective drug
pressure (83, 84, 116, 117, 395). The rate at which this occurs
depends on the extent to which archived wild type viruses exist
within an individual patient. If there are no archived wild-type
viruses, a significant interlocking of primary and compensatory
mutations may limit reversion to wild type (21).

Finally, one clinical trial in patients with detectable viremia
and mulitdrug-resistant virus showed that in those patients
randomized to discontinuing HIV therapy, RNA decreased by
0.84 logs and CD4 cell counts decreased by 128 cells/	l. This
study suggests that the decreases in the fitness of drug-resistant
viruses seen in vitro are clinically significant and that continu-
ing drug therapy in the face of resistance may have utility in
patients with few other therapeutic options. However, the pos-
sibility that many of the isolates in this study retained some
degree of susceptibility to one or more drugs in treatment
regimens that were used, cannot be excluded.

Quasispecies Nature of HIV-1

The inability to reliably detect minor drug-resistant HIV-1
variants is a recognized limitation of HIV-1 drug susceptibility
testing using either genotypic or phenotypic methods. This is
particularly troublesome in patients with complicated treat-
ment histories or in patients who have discontinued one or
more antiretroviral drugs (84, 395). To maximize the likeli-
hood that a sequence will identify mutations present within the
virus population of a patient, it is important to obtain plasma
samples for resistance testing before stopping or changing an-
tiretroviral drugs and to consider a patient’s treatment history
when interpreting the results of resistance testing.

In some patients, the treatment history can be used to infer
the presence of archived drug resistance mutations. For exam-
ple, if a patient previously received lamivudine as part of an
incompletely suppressive treatment regimen, it is likely that
M184V exists within the virus population of that patient even
if it is not detected at the time of genotyping. The same prin-
ciple would apply to patients who received NNRTIs as part of
an incompletely suppressive treatment regimen; however, in
this situation, it would not be possible to know specifically
which NNRTI mutations are likely to be archived. In contrast,
patients receiving lamivudine and NNRTIs as part of com-
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pletely suppressive treatment regimens are not expected to
harbor variants resistant to these drugs.

If a patient once harbored drug-resistant variants, these vari-
ants may persist at low levels in latently infected cells even if a
subsequent treatment regimen brings about complete virus
suppression (103, 146, 163, 245, 411). In patients in whom
previous resistance tests have documented extensive drug re-
sistance, the clinical usefulness of repeated resistance testing is
likely to be minimal, because many resistant variants selected
by previous treatment regimens will go undetected in future
tests, yet are likely to emerge during attempts at salvage ther-
apy.

Cross-Resistance

Most mutations arising during drug therapy contribute re-
sistance to multiple drugs within the same drug class. This is
particularly problematic considering that there are just three
drug classes and that combinations of drugs from at least two
classes are usually required to achieve durable HIV-1 suppres-
sion. Genotypic assays frequently do not identify enough fully
active non-cross-resistant drugs to completely block HIV-1
replication and many patients changing regimens because of
virologic failure will have to use a regimen containing drugs
that are partially compromised at the start of therapy.

TABLE 6. Expert-system features for HIV-1 genotypic interpretation

Parameter Options Comments

Data input Nucleic acid sequence Raw nucleotide sequence data are not necessary for interpretation
but are necessary for quality control purposes to exclude PCR
contamination and sample mix-up.

List of amino acid differences from a consensus
reference sequence

A list of mutations is sufficient for sequence interpretation because
silent mutations have not been shown to affect drug susceptibility.
An amino acid sequence alone may be inadequate because it is
not possible to represent mixtures in a “one-dimensional” string
of amino acids.

Knowledge base Correlations between genotype and phenotype
(laboratory and clinical isolates)

Machine learning algorithms are possible because the data are ho-
mogeneous and quantitative. Such algorithms, however, cannot
consider other forms of data, such as associations between muta-
tions and treatment history or clinical outcome.

Correlations between genotype and clinical data
(treatment history and clinical outcome)

There is generally insufficient clinical outcome data for most muta-
tions. An approach that uses both phenotypic and clinical data is
the most complete, but machine learning algorithms have not yet
been developed for such heterogeneous data.

Algorithm Drug-based rules: resistance to drug X if the fol-
lowing mutations are present or if the following
combinations of mutations are present

One advantage of this type of rule is that mutation interactions can
be taken into account. However, many rules based on different
mutation patterns must be encoded to represent multiple patterns
of mutations and multiple levels of drug resistance.

Mutation-based rules: each mutation contributes
some degree of resistance to one or more drugs.
Drug resistance interpretations are derived by
combining contributions of individual mutations

This approach is easy to encode and to update, but interactions be-
tween specific mutations require the addition of drug-based rules.

Machine learning: pattern matching, neural net-
work, decision trees, etc.

These can be implemented if the knowledge base consists of homo-
geneous data.

Data output Number of levels of drug resistance and their ex-
planation

At least four levels of drug resistance are probably necessary: sus-
ceptible, low-level resistance, intermediate resistance, high-level
resistance

Comment Comments could report the presence of atypical findings, mutation
interactions, and the degree of confidence associated with each
drug interpretation.

TABLE 7. Algorithms for interpreting HIV-1 protease and RT sequences

Algorithm Availability Description

Resistance Collaborative Group (72) Public Table of rules developed for a standardized reanalysis of eight published studies link-
ing drug resistance mutations and clinical outcome. This algorithm is primarily of
historical interest because it is no longer being updated.

HIV RT and Protease Sequence
Database (336)

Public Mutations are assigned drug penalties. Drug penalties are added and drugs are as-
signed an inferred level of resistance. Drug penalties are hyperlinked to primary
data linking mutation and drug. Program can be found at http://hivdb.stanford.edu.

French National Agency for AIDS
Research (312)

Public Table of rules listing mutations conferring genotypic resistance or possible genotypic
resistance to anti-HIV drugs.

Retrogram (Virology Networks) Proprietary Comprehensive set of drug-based rules. Updated regularly by an expert panel. This
interpretation system was used in the Havana clinical trial.

GuideLines (Visible Genetics) Public Drug-based rules. Updated regularly by an expert panel.
VirtualPhenotype (Virco; Mechelin,

Belgium)a
Proprietary Pattern matching algorithm that uses a large genotype-phenotype correlative data-

base to infer phenotypic properties based on sequence data.

a Verbiest et al., Antivir. Ther. 5(Suppl. 3):62, abstr. 81, 2000.
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Although cross-resistance is not a direct limitation of geno-
typic or phenotypic testing, it limits the utility of resistance
testing particularly in heavily treated patients. Nonetheless,
resistance assays have a role even in heavily treated patients
because they provide prognostic data and help avoid unneces-
sary drugs. Rather than including fully active drugs, salvage
therapy in heavily treated patients will have to include drug
combinations that exploit antagonistic mutational interactions
or generate high in vivo drug levels.
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